第一個(gè)輸出特性圖如圖2所示??梢钥闯觯诘谝幌笙捱\(yùn)行中,IM105-M6Q1B的壓降大大低于(約4A)IKD04N60RC2的壓降。此外,通常情況下,IM105-M6Q1B的RDS(on)溫度依賴性在Vgs = 15 V時(shí)僅為0.11 mΩ/°C,在Vgs = 18 V時(shí)略高,為0.2 mΩ/℃。這凸顯了CoolSiCTM技術(shù)的溫度依賴性極小的特征。另一方面,在二極管導(dǎo)通期間的第三象限運(yùn)行中,IM105-M6Q1B的壓降高于IKD04N60RC2。然而,請(qǐng)注意,二極管僅在死區(qū)時(shí)間內(nèi)導(dǎo)通,在應(yīng)用條件下,死區(qū)時(shí)間約在0.5到1 μs之間,因此,其造成的損耗微不足道。當(dāng)SiC MOSFET溝道在第三象限運(yùn)行中導(dǎo)通時(shí),壓降略低于第一象限運(yùn)行中的壓降。
圖3所示為第二個(gè)比較圖。顯然,在Tj = 25°C條件下,IPD60R280PFD7S在第一象限運(yùn)行中的壓降低于IM105-M6Q1B。當(dāng)Vgs = 10 V且Tj = 25°C時(shí),IPD60R280PFD7S的典型RDS(on)為233 mΩ。如其數(shù)據(jù)表所列,對(duì)于這種器件類型,增加?xùn)艠O偏壓并不會(huì)進(jìn)一步降低壓降。除此之外,還可以看出, IPD60R280PFD7S的壓降溫度依賴性明顯高于IM105-M6Q1B。IPD60R280PFD7S的典型RDS(on)溫度依賴性約為2.53 mΩ/°C,因此當(dāng)結(jié)溫升高時(shí),其導(dǎo)通損耗將高于IM105-M6Q1B。同樣地,當(dāng)二極管加正向偏壓時(shí),IPD60R280PFD7S的壓降低于IM105-M6Q1B。
圖3:IM105-M6Q1B的通態(tài)輸出特性與IPD60R280PFD7S對(duì)比
最后,圖4顯示了上述器件的典型動(dòng)態(tài)損耗總值,這些數(shù)據(jù)是使用典型的雙脈沖測(cè)試裝置測(cè)得。請(qǐng)注意,本分析不包括反向恢復(fù)損耗,因?yàn)樗鼈儗?duì)總損耗的影響相對(duì)較小。兩種器件的電壓變化率dv/dt均調(diào)節(jié)為6.5 – 7 V/ns左右,以確保公平比較。IM105-M6Q1B的開(kāi)關(guān)速度由其集成柵極驅(qū)動(dòng)器在內(nèi)部調(diào)節(jié)為6至7 V/ns(20–80%)。
測(cè)試表明,相比于IKD04N60RC2,特別是相比于IPD60R280PFD7S,IM105-M6Q1B的功率損耗低得多,其功率損耗主要取決于導(dǎo)通損耗。最后,IM105-M6Q1B的動(dòng)態(tài)損耗對(duì)溫度的依賴性可以忽略不計(jì),而其他器件,哪怕當(dāng)Tj=100°C時(shí),損耗也開(kāi)始顯著增加。
圖4:不同開(kāi)關(guān)電流和溫度條件下的開(kāi)通和關(guān)斷動(dòng)態(tài)損耗之和
典型冰箱壓縮機(jī)仿真分析
典型冰箱壓縮機(jī)的完整工作循環(huán)包括多個(gè)工作點(diǎn)。其中兩個(gè)最獨(dú)特的工作點(diǎn)是額定工作點(diǎn)(輸出功率約為40 W)和高負(fù)載工作點(diǎn)(輸出功率約為160 W)。本分析使用了PLECS®軟件工具來(lái)仿真計(jì)算三個(gè)器件的功率損耗。圖5和圖6所示為仿真結(jié)果和典型應(yīng)用條件。在這些仿真中,殼溫設(shè)置為T(mén)c=110°C。受限于材料特性,這通常是印刷電路板(PCB)的最高工作殼溫。在輕負(fù)載或額定負(fù)載條件下,IM105-M6Q1B的損耗比IPD60R280PFD7S低了近43%,更比IKD04N60RC2低60%。在這些條件下,將柵極電壓增至Vgs=18V并沒(méi)有帶來(lái)明顯益處。
在高負(fù)載的情況下,IM105-M6Q1B的損耗比IPD60R280PFD7S低了近37%,更比IKD04N60RC2低64%。在這個(gè)測(cè)試中,將IM105-M6Q1B的柵極電壓增至Vgs=18V,使損耗相對(duì)于柵極電壓Vgs=15V時(shí)降低了14%,這是IM105-M6Q1B可實(shí)現(xiàn)的最低損耗。
圖5:在特定的額定負(fù)載條件下典型冰箱壓縮機(jī)的功率損耗分割圖
圖6:在特定的高負(fù)載條件下典型冰箱壓縮機(jī)的功率損耗分割圖
逆變器級(jí)的效率計(jì)算如表1所示。本分析考慮了一個(gè)兩電平三相逆變器,即,總共6顆器件。在標(biāo)稱負(fù)載下,IM105-M6Q1B的總效率增加量比IKD04N60RC2多2.7%,比IPD60R280PFD7S多近1%。在高負(fù)載條件下,相比于IKD04N60RC2和IPD60R280PFD7S,效率分別增加了約為1.5%和0.5%。
器件 | 效率 [%] |
標(biāo)稱負(fù)載 | 高負(fù)載 |
IM105-M6Q1B_18 V | 98.77 | 99.29 |
IM105-M6Q1B_15 V | 98.74 | 99.17 |
IPD60R280PFD7S | 97.82 | 98.69 |
IKD04N60RC2 | 96.95 | 97.75 |
表1:6橋兩電平三相逆變器的效率計(jì)算
硬件實(shí)驗(yàn)結(jié)果
本小節(jié)討論了IM105-M6Q1B在外形(即,功率密度)方面的額外好處。此外,利用IKD04N60RC2和IM105-M6Q1B,對(duì)采用類似設(shè)計(jì)的低功率驅(qū)動(dòng)板的無(wú)散熱片輸出功率能力進(jìn)行了比較分析。圖7并排顯示了這兩個(gè)驅(qū)動(dòng)板的圖片,以便清楚地突出顯示它們的差異。兩個(gè)驅(qū)動(dòng)板都搭載了類似的電磁干擾(EMI)濾波器、二極管整流器、DC link電容器和單片機(jī)IMC101T-038(iMOTION? IMC100系列電機(jī)控制器)。
兩種設(shè)計(jì)的布局都采用雙層板和35 μm銅箔厚度。主要區(qū)別在于逆變器級(jí)。使用IKD04N60RC2的驅(qū)動(dòng)板需要6顆采用TO-252封裝的IGBT單管和一個(gè)全橋三相柵極驅(qū)動(dòng)器IC,以形成一個(gè)兩電平三相逆變器。另一方面,得益于其將半橋和柵極驅(qū)動(dòng)器集成到QFN封裝中,使用IM105-M6Q1B的驅(qū)動(dòng)板所需空間小得多。因此,這個(gè)驅(qū)動(dòng)板的尺寸可以縮小15%,從而提高功率密度。
圖7:低功率消費(fèi)類驅(qū)動(dòng)應(yīng)用:藍(lán)色PCB(左側(cè))使用IM105-M6Q1B,尺寸:66.4 mm x 78 mm;紅色PCB(右側(cè))使用IKD04N60RC2,尺寸:78 mm x 78 mm
小功率家電電機(jī)驅(qū)動(dòng)應(yīng)用(如,冰箱壓縮機(jī)、循環(huán)泵,等等)的開(kāi)關(guān)頻率(fsw)通常在7.5至17 kHz之間。這些應(yīng)用大部分未配置散熱片,因?yàn)槠涞洼敵龉β蚀_保了功率開(kāi)關(guān)在規(guī)定熱限值范圍內(nèi)工作。如前所述,它們的最大允許殼溫(Tc,max)限制在110°C左右。
為了研究和分析驅(qū)動(dòng)器在測(cè)試條件下的性能,選擇了一個(gè)典型的冰箱壓縮機(jī)。圖8所示為將冰箱壓縮機(jī)用作負(fù)載的實(shí)驗(yàn)室試驗(yàn)臺(tái)。使用熱像儀來(lái)監(jiān)測(cè)逆變器的頂部殼溫??刂品桨笇?shí)現(xiàn)采用了英飛凌的iMOTIONTM IMC101T-T038單片機(jī)和隔離式調(diào)試探頭iMOTIONTM Link。被測(cè)驅(qū)動(dòng)器直接向DC link供電,以避免任何電網(wǎng)電壓波動(dòng)或負(fù)載對(duì)電壓造成影響,并且支持使用標(biāo)準(zhǔn)無(wú)源探頭,而不需要浮地的測(cè)量設(shè)備。將無(wú)源探測(cè)器連接至低邊功率器件,以測(cè)量器件的典型dv/dt行為。最后,在輸出相中連接一個(gè)電流探頭,用于監(jiān)測(cè)電機(jī)電流。
圖8:實(shí)驗(yàn)室試驗(yàn)臺(tái)
采用了兩種調(diào)制技術(shù),一種是7段式空間矢量脈寬調(diào)制(SVPWM),另一種是5段式空間矢量脈寬調(diào)制(SVPWM)(可降低開(kāi)關(guān)損耗),如[6]所述。表2列出了實(shí)驗(yàn)測(cè)試條件。對(duì)于所有實(shí)驗(yàn)條件,DC link電壓均預(yù)設(shè)為310 V,由高壓直流電源單元供電。冰箱壓縮機(jī)的輸出基頻(fs)配置為20 Hz。環(huán)境溫度(Ta)為約25°C室溫。未測(cè)量功率因數(shù)(PF)以避免任何額外的寄生效應(yīng)的影響。唯一的獨(dú)立實(shí)驗(yàn)變量是調(diào)制系數(shù)。調(diào)節(jié)調(diào)制系數(shù),直至逆變器達(dá)到最高管殼溫,從而獲得不同的允許相電流。使用開(kāi)環(huán)控制方案進(jìn)行調(diào)節(jié),在本實(shí)驗(yàn)中即為V/f控制,因?yàn)閮H關(guān)注逆變器級(jí)的情況。這些實(shí)驗(yàn)可以表明驅(qū)動(dòng)板的最大輸出功率能力。
Vdc [V] | 310 |
fs [Hz] | 20 |
Ta [℃] | 25 |
fsw [kHz] | 7.5–17 |
Vgs–Vge [V] | 0–15, 18.5 |
Tc,max [℃] | 110 |
死區(qū)時(shí)間 [μs] | 1 |
表2:實(shí)驗(yàn)測(cè)試條件
圖9所示為輸出功率能力。圖中的輸出功率計(jì)算考慮了PF為0.75且調(diào)幅指數(shù)為1。顯而易見(jiàn),IM105-M6Q1B的輸出功率幾乎是IKD04N60RC2驅(qū)動(dòng)板的兩倍,這也證明其功率密度更高。相比于在Vgs=15V條件下的測(cè)試,在這項(xiàng)測(cè)試中,柵極電壓增至約Vgs=18.5V,這使得輸出功率增加了6%。
圖9:不同開(kāi)關(guān)頻率和調(diào)制方案下的最大允許相電流
最后,圖10和圖11所示為這項(xiàng)測(cè)試使用的兩顆器件的典型dv/dt行為。高邊開(kāi)關(guān)用HS表示,低邊開(kāi)關(guān)用LS表示。請(qǐng)注意,IKD04N60RC2的導(dǎo)通dv/dt設(shè)置為約6至7 V/ns。
圖10:在Tc,max下,設(shè)置為6.5 V/ns的IKD04N60RC2驅(qū)動(dòng)板在不同開(kāi)關(guān)電流下的電壓變化率(dv/dt,20-80%)
圖11:在Tc,max下,IM105-M6Q1B驅(qū)動(dòng)板在不同開(kāi)關(guān)電流下的電壓變化率(dv/dt,20-80%)
結(jié)語(yǔ)
新出臺(tái)的針對(duì)小功率電機(jī)驅(qū)動(dòng)應(yīng)用(即,家用電器)的能效標(biāo)簽指令,強(qiáng)調(diào)了開(kāi)發(fā)創(chuàng)新解決方案和采用新型半導(dǎo)體技術(shù),以達(dá)到最高能效等級(jí)的重要性。本文介紹了英飛凌CoolSiCTM MOSFET在集成式產(chǎn)品IM105-M6Q1B中實(shí)現(xiàn)的多個(gè)優(yōu)點(diǎn)。尺寸僅為7 mm x 7 mm的小型QFN封裝有助于設(shè)計(jì)出具備更高功率密度的系統(tǒng)級(jí)解決方案。為了突出其優(yōu)點(diǎn),設(shè)計(jì)了一個(gè)基于IM105-M6Q1B的驅(qū)動(dòng)板,其尺寸比基于IKD04N60RC2的分立式解決方案縮小了15%。IM105-M6Q1B的輸出功率處理能力也大大優(yōu)于IKD04N60RC2。不僅如此,使用IM105-M6Q1B可將逆變器效率提高1 – 2.7 %。
免責(zé)聲明: 本文章轉(zhuǎn)自其它平臺(tái),并不代表本站觀點(diǎn)及立場(chǎng)。若有侵權(quán)或異議,請(qǐng)聯(lián)系我們刪除。謝謝! 矽源特科技ChipSourceTek |