精品国产sm全部网站免费_日韩精品毛片_推荐高清免费不卡网站_亚洲无码人成电影在线观看_一本伊大人香蕉久久網手機_福利视频你懂得_亚洲欧美曰韩在线_成年男女免费网站点播_成年人播放一级片高清_亚洲视频在线视频

服務(wù)熱線: 13823761625

方案設(shè)計(jì)技術(shù)分享

聯(lián)系我們

BLDC電機(jī)控制算法

發(fā)布日期:2024-04-21 點(diǎn)擊次數(shù):157
    無刷電機(jī)屬于自換流型(自我方向轉(zhuǎn)換),因此控制起來更加復(fù)雜。
    BLDC電機(jī)控制要求了解電機(jī)進(jìn)行整流轉(zhuǎn)向的轉(zhuǎn)子位置和機(jī)制。對(duì)于閉環(huán)速度控制,有兩個(gè)附加要求,即對(duì)于轉(zhuǎn)子速度或電機(jī)電流以及PWM信號(hào)進(jìn)行測(cè)量,以控制電機(jī)速度以及功率。
    BLDC電機(jī)可以根據(jù)應(yīng)用要求采用邊排列或中心排列PWM信號(hào)。大多數(shù)應(yīng)用僅要求速度變化操作,將采用6個(gè)獨(dú)立的邊排列PWM信號(hào)。這就提供了最高的分辨率。如果應(yīng)用要求服務(wù)器定位、能耗制動(dòng)或動(dòng)力倒轉(zhuǎn),推薦使用補(bǔ)充的中心排列PWM信號(hào)。
    為了感應(yīng)轉(zhuǎn)子位置,BLDC電機(jī)采用霍爾效應(yīng)傳感器來提供絕對(duì)定位感應(yīng)。這就導(dǎo)致了更多線的使用和更高的成本。無傳感器BLDC控制省去了對(duì)于霍爾傳感器的需要,而是采用電機(jī)的反電動(dòng)勢(shì)(電動(dòng)勢(shì))來預(yù)測(cè)轉(zhuǎn)子位置。無傳感器控制對(duì)于像風(fēng)扇和泵這樣的低成本變速應(yīng)用至關(guān)重要。在采用 BLDC 電機(jī)時(shí),冰箱和空調(diào)壓縮機(jī)也需要無傳感器控制。
空載時(shí)間的插入和補(bǔ)充:
    大多數(shù)BLDC電機(jī)不需要互補(bǔ)的PWM、空載時(shí)間插入或空載時(shí)間補(bǔ)償??赡軙?huì)要求這些特性的BLDC應(yīng)用僅為高性能BLDC伺服電動(dòng)機(jī)、正弦波激勵(lì)式BLDC電機(jī)、無刷AC、或PC同步電機(jī)。
    控制算法許多不同的控制算法都被用以提供對(duì)于BLDC電機(jī)的控制。典型做法是,將功率晶體管用作線性穩(wěn)壓器來控制電機(jī)電壓。當(dāng)驅(qū)動(dòng)高功率電機(jī)時(shí),這種方法并不實(shí)用。高功率電機(jī)必須采用PWM控制,并要求一個(gè)微控制器來提供起動(dòng)和控制功能。
控制算法必須提供下列三項(xiàng)功能:
    ? 用于控制電機(jī)速度的 PWM 電壓;
    ? 用于對(duì)電機(jī)進(jìn)整流換向的機(jī)制;
    ? 利用反電動(dòng)勢(shì)或霍爾傳感器來預(yù)測(cè)轉(zhuǎn)子位置的方法;
    脈沖寬度調(diào)制僅用于將可變電壓應(yīng)用到電機(jī)繞組。有效電壓與PWM占空比成正比。當(dāng)?shù)玫竭m當(dāng)?shù)恼鲹Q向時(shí),BLDC的扭矩速度特性與以下直流電機(jī)相同。可以用可變電壓來控制電機(jī)的速度和可變轉(zhuǎn)矩。
圖1
    功率晶體管的換向?qū)崿F(xiàn)了定子中的適當(dāng)繞組可根據(jù)轉(zhuǎn)子位置生成最佳的轉(zhuǎn)矩。在一個(gè)BLDC電機(jī)中,MCU必須知道轉(zhuǎn)子的位置并能夠在恰當(dāng)?shù)臅r(shí)間進(jìn)行整流換向。
    BLDC電機(jī)的梯形整流換向,對(duì)于直流無刷電機(jī)采用所謂的梯形整流換向是最簡單的方法之一。
圖2:用于BLDC電機(jī)的梯形控制器的簡化框圖
    在圖 2 中,每一次要通過一對(duì)電機(jī)終端來控制電流,而第三個(gè)電機(jī)終端總是與電源電學(xué)上斷開。
    嵌入大電機(jī)中的三種霍爾器件用于提供數(shù)字信號(hào),它們?cè)?0度的扇形區(qū)內(nèi)測(cè)量轉(zhuǎn)子位置,并在電機(jī)控制器上提供這些信息。由于每次兩個(gè)繞組上的電流量相等,而第三個(gè)繞組上的電流為零,這種方法僅能產(chǎn)生具有六個(gè)方向其中之一的電流空間矢量。隨著電機(jī)的轉(zhuǎn)動(dòng),電機(jī)終端的電流在每轉(zhuǎn) 60 度時(shí),實(shí)現(xiàn)一次電開關(guān)(整流換向),因此電流空間矢量總是在 90 度相移的最接近 30 度的位置。
3:梯形控制:驅(qū)動(dòng)波形和整流處的轉(zhuǎn)矩
    因此每個(gè)繞組的電流波型為梯形,從零開始到正電流再到零然后再到負(fù)電流。
    這就產(chǎn)生了電流空間矢量,當(dāng)它隨著轉(zhuǎn)子的旋轉(zhuǎn)在 6 個(gè)不同的方向上進(jìn)行步升時(shí),它將接近平衡旋轉(zhuǎn)。
    在像空調(diào)和冰箱這樣的電機(jī)應(yīng)用中,采用霍爾傳感器并不是一個(gè)不變的選擇。在非聯(lián)繞組中感應(yīng)的反電動(dòng)勢(shì)傳感器可以用來取得相同的結(jié)果。
    這種梯形驅(qū)動(dòng)系統(tǒng)因其控制電路的簡易性而非常普通,但是它們?cè)谡鬟^程中卻要遭遇轉(zhuǎn)矩紋波問題。
    BLDC電機(jī)的正弦整流換向梯形整流換向還不足以為提供平衡、精準(zhǔn)的無刷直流電機(jī)控制。這主要是因?yàn)樵谝粋€(gè)三相無刷電機(jī)(帶有一個(gè)正統(tǒng)波反電動(dòng)勢(shì))中所產(chǎn)生的轉(zhuǎn)矩由下列等式來定義:
    轉(zhuǎn)軸轉(zhuǎn)矩=Kt [IRSin(o)+ISSin(o+120)+ITSin(o+240)]其中:
    o 為轉(zhuǎn)軸的電角度
    Kt 為電機(jī)的轉(zhuǎn)矩常數(shù)
    IR,IS 和 IT 為相位電流
    如果相位電流是正弦的:IR=I0Sino;IS=I0Sin(+120o);IT=I0Sin(+240o)
    將得到:轉(zhuǎn)軸轉(zhuǎn)矩=1.5I0*Kt(一個(gè)獨(dú)立于轉(zhuǎn)軸角度的常數(shù))
    正弦整流換向無刷電機(jī)控制器努力驅(qū)動(dòng)三個(gè)電機(jī)繞組,其三路電流隨著電機(jī)轉(zhuǎn)動(dòng)而平穩(wěn)的進(jìn)行正弦變化。選擇這些電流的相關(guān)相位,這樣它們將會(huì)產(chǎn)生平穩(wěn)的轉(zhuǎn)子電流空間矢量,方向是與轉(zhuǎn)子正交的方向,并具有不變量。這就消除了與轉(zhuǎn)向相關(guān)的轉(zhuǎn)矩紋波和轉(zhuǎn)向脈沖。
    為了隨著電機(jī)的旋轉(zhuǎn),生成電機(jī)電流的平穩(wěn)的正弦波調(diào)制,就要求對(duì)于轉(zhuǎn)子位置有一個(gè)精確有測(cè)量?;魻柶骷H提供了對(duì)于轉(zhuǎn)子位置的粗略計(jì)算,還不足以達(dá)到目的要求。基于這個(gè)原因,就要求從編碼器或相似器件發(fā)出角反饋。
圖4:BLDC 電機(jī)正弦波控制器的簡化框圖
    由于繞組電流必須結(jié)合產(chǎn)生一個(gè)平穩(wěn)的常量轉(zhuǎn)子電流空間矢量,而且定子繞組的每個(gè)定位相距 120 度角,因此每個(gè)線組的電流必須是正弦的而且相移為 120 度。采用編碼器中的位置信息來對(duì)兩個(gè)正弦波進(jìn)行合成,兩個(gè)間的相移為 120 度。然后,將這些信號(hào)乘以轉(zhuǎn)矩值,因此正弦波的振幅與所需要的轉(zhuǎn)矩成正比。結(jié)果,兩個(gè)正弦波電流命令得到恰當(dāng)?shù)亩ㄏ啵瑥亩谡环较虍a(chǎn)生轉(zhuǎn)動(dòng)定子電流空間矢量。
    由于繞組電流必須結(jié)合產(chǎn)生一個(gè)平穩(wěn)的常量轉(zhuǎn)子電流空間矢量,而且定子繞組的每個(gè)定位相距 120 度角,因此每個(gè)線組正弦電流命令信號(hào)輸出一對(duì)在兩個(gè)適當(dāng)?shù)碾姍C(jī)繞組中調(diào)制電流的P-I控制器。第三個(gè)轉(zhuǎn)子繞組中的電流是受控繞組電流的負(fù)數(shù)和,因此不能被分別控制。每個(gè)P-I控制器的輸出被送到一個(gè)PWM調(diào)制器,然后送到輸出橋和兩個(gè)電機(jī)終端。應(yīng)用到第三個(gè)電機(jī)終端的電壓源于應(yīng)用到前兩個(gè)線組的信號(hào)的負(fù)數(shù)和,用于分別間隔 120 度的三個(gè)正弦電壓。
    由于繞組電流必須結(jié)合產(chǎn)生一個(gè)平穩(wěn)的常量轉(zhuǎn)子電流空間矢量,而且定子繞組的每個(gè)定位相距 120 度角,因此每個(gè)線組結(jié)果,實(shí)際輸出電流波形精確的跟蹤正弦電流命令信號(hào),所得電流空間矢量平穩(wěn)轉(zhuǎn)動(dòng),在量上得以穩(wěn)定并以所需的方向定位。
    由于繞組電流必須結(jié)合產(chǎn)生一個(gè)平穩(wěn)的常量轉(zhuǎn)子電流空間矢量,而且定子繞組的每個(gè)定位相距 120 度角,因此每個(gè)線組一般通過梯形整流轉(zhuǎn)向,不能達(dá)到穩(wěn)定控制的正弦整流轉(zhuǎn)向結(jié)果。然而,由于其在低電機(jī)速度下效率很高,在高電機(jī)速度下將會(huì)分開。這是由于速度提高,電流回流控制器必須跟蹤一個(gè)增加頻率的正弦信號(hào)。同時(shí),它們必須克服隨著速度提高在振幅和頻率下增加的電機(jī)的反電動(dòng)勢(shì)。
    由于繞組電流必須結(jié)合產(chǎn)生一個(gè)平穩(wěn)的常量轉(zhuǎn)子電流空間矢量,而且定子繞組的每個(gè)定位相距 120 度角,因此每個(gè)線組由于P-I控制器具有有限增益和頻率響應(yīng),對(duì)于電流控制回路的時(shí)間變量干擾將引起相位滯后和電機(jī)電流中的增益誤差,速度越高,誤差越大。這將干擾電流空間矢量相對(duì)于轉(zhuǎn)子的方向,從而引起與正交方向產(chǎn)生位移。
    由于繞組電流必須結(jié)合產(chǎn)生一個(gè)平穩(wěn)的常量轉(zhuǎn)子電流空間矢量,而且定子繞組的每個(gè)定位相距 120 度角,因此每個(gè)線組當(dāng)產(chǎn)生這種情況時(shí),通過一定量的電流可以產(chǎn)生較小的轉(zhuǎn)矩,因此需要更多的電流來保持轉(zhuǎn)矩,效率降低。
    由于繞組電流必須結(jié)合產(chǎn)生一個(gè)平穩(wěn)的常量轉(zhuǎn)子電流空間矢量,而且定子繞組的每個(gè)定位相距 120 度角,因此每個(gè)線組隨著速度的增加,這種降低將會(huì)延續(xù)。在某種程度上,電流的相位位移超過 90 度。當(dāng)產(chǎn)生這種情況時(shí),轉(zhuǎn)矩減至為零。通過正弦的結(jié)合,上面這點(diǎn)的速度導(dǎo)致了負(fù)轉(zhuǎn)矩,因此也就無法實(shí)現(xiàn)。
01  AC 電機(jī)控制算法
 1、標(biāo)量控制 
     標(biāo)量控制(或 V/Hz 控制)是一個(gè)控制指令電機(jī)速度的簡單方法。指令電機(jī)的穩(wěn)態(tài)模型主要用于獲得技術(shù),因此瞬態(tài)性能是不可能實(shí)現(xiàn)的。系統(tǒng)不具有電流回路。為了控制電機(jī),三相電源只有在振幅和頻率上變化。
2、矢量控制或磁場(chǎng)定向控制 
     在電動(dòng)機(jī)中的轉(zhuǎn)矩隨著定子和轉(zhuǎn)子磁場(chǎng)的功能而變化,并且當(dāng)兩個(gè)磁場(chǎng)互相正交時(shí)達(dá)到峰值。在基于標(biāo)量的控制中,兩個(gè)磁場(chǎng)間的角度顯著變化。
     矢量控制設(shè)法在 AC 電機(jī)中再次創(chuàng)造正交關(guān)系。為了控制轉(zhuǎn)矩,各自從產(chǎn)生的磁通量中生成電流,以實(shí)現(xiàn) DC 機(jī)器的響應(yīng)性。
     一個(gè) AC 指令電機(jī)的矢量控制與一個(gè)單獨(dú)的勵(lì)磁 DC 電機(jī)控制相似。在一個(gè) DC 電機(jī)中,由勵(lì)磁電流 IF 所產(chǎn)生的磁場(chǎng)能量ΦF 與由電樞電流 IA 所產(chǎn)生的電樞磁通ΦA 正交。這些磁場(chǎng)都經(jīng)過去耦并且相互間很穩(wěn)定。因此,當(dāng)電樞電流受控以控制轉(zhuǎn)矩時(shí),磁場(chǎng)能量仍保持不受影響,并實(shí)現(xiàn)了更快的瞬態(tài)響應(yīng)。
     三相 AC 電機(jī)的磁場(chǎng)定向控制(FOC)包括模仿 DC 電機(jī)的操作。所有受控變量都通過數(shù)學(xué)變換,被轉(zhuǎn)換到 DC 而非 AC。其目標(biāo)是獨(dú)立的控制轉(zhuǎn)矩和磁通。
磁場(chǎng)定向控制(FOC)有兩種方法:
     直接 FOC:轉(zhuǎn)子磁場(chǎng)的方向(Rotor flux angle)是通過磁通觀測(cè)器直接計(jì)算得到的。
     間接 FOC:轉(zhuǎn)子磁場(chǎng)的方向(Rotor flux angle)是通過對(duì)轉(zhuǎn)子速度和滑差(slip)的估算或測(cè)量而間接獲得的。
     矢量控制要求了解轉(zhuǎn)子磁通的位置,并可以運(yùn)用終端電流和電壓(采用 AC 感應(yīng)電機(jī)的動(dòng)態(tài)模型)的知識(shí),通過高級(jí)算法來計(jì)算。然而從實(shí)現(xiàn)的角度看,對(duì)于計(jì)算資源的需求是至關(guān)重要的。
     可以采用不同的方式來實(shí)現(xiàn)矢量控制算法。前饋技術(shù)、模型估算和自適應(yīng)控制技術(shù)都可用于增強(qiáng)響應(yīng)和穩(wěn)定性。
3、AC電機(jī)的矢量控制:深入了解 
     矢量控制算法的核心是兩個(gè)重要的轉(zhuǎn)換:Clark變換,Park變換和它們的逆運(yùn)算。采用 Clark 和 Park 變換,帶來可以控制到轉(zhuǎn)子區(qū)域的轉(zhuǎn)子電流。這樣做充許一個(gè)轉(zhuǎn)子控制系統(tǒng)決定應(yīng)供應(yīng)到轉(zhuǎn)子的電壓,以使動(dòng)態(tài)變化負(fù)載下的轉(zhuǎn)矩最大化。
     Clark 變換:Clark數(shù)學(xué)轉(zhuǎn)換將一個(gè)三相系統(tǒng)修改成兩個(gè)坐標(biāo)系統(tǒng):
    其中 Ia 和 Ib 是正交基準(zhǔn)面的組成部分,Io 是不重要的 homoplanar 部分。

圖5:三相轉(zhuǎn)子電流與轉(zhuǎn)動(dòng)參考系的關(guān)系
4、Park轉(zhuǎn)換:Park 數(shù)學(xué)轉(zhuǎn)換將雙向靜態(tài)系統(tǒng)轉(zhuǎn)換成轉(zhuǎn)動(dòng)系統(tǒng)矢量
    兩相α,β幀表示通過 Clarke 轉(zhuǎn)換進(jìn)行計(jì)算,然后輸入到矢量轉(zhuǎn)動(dòng)模塊,它在這里轉(zhuǎn)動(dòng)角θ,以符合附著于轉(zhuǎn)子能量的 d,q 幀。根據(jù)上述公式,實(shí)現(xiàn)了角度θ的轉(zhuǎn)換。
    AC電機(jī)的磁場(chǎng)定向矢量控制的基本結(jié)構(gòu)Clarke 變換采用三相電流 IA,IB 以及 IC,其中 IA 和 IB 在固定座標(biāo)定子相中的電流被變換成 Isd 和 Isq,成為 Park 變換 d,q 中的元素。其通過電機(jī)通量模型來計(jì)算的電流 Isd,Isq 以及瞬時(shí)流量角θ被用來計(jì)算交流感應(yīng)電機(jī)的電動(dòng)扭矩。
圖6:矢量控制交流電機(jī)的基本原理
    這些導(dǎo)出值與參考值相互比較,并由PI控制器更新。
表1:電動(dòng)機(jī)標(biāo)量控制和矢量控制的比較
02  BLDC矢量控制
    基于矢量的電機(jī)控制的一個(gè)固有優(yōu)勢(shì)是,可以采用同一原理,選擇適合的數(shù)學(xué)模型去分別控制各種類型的 AC、PM-AC 或者 BLDC 電機(jī)。
    BLDC電機(jī)的矢量控制BLDC電機(jī)是磁場(chǎng)定向矢量控制的主要選擇。采用了FOC的無刷電機(jī)可以獲得更高的效率,最高效率可以達(dá)到95%,并且對(duì)電機(jī)在高速時(shí)也十分有效率。
1、步進(jìn)電機(jī)控制 
    步進(jìn)電機(jī)控制通常采用雙向驅(qū)動(dòng)電流,其電機(jī)步進(jìn)由按順序切換繞組來實(shí)現(xiàn)。通常這種步進(jìn)電機(jī)有 3 個(gè)驅(qū)動(dòng)順序:
①單相全步進(jìn)驅(qū)動(dòng):
    在這種模式中,其繞組按如下順序加電,AB/CD/BA/DC(BA 表示繞組 AB 的加電是反方向進(jìn)行的)。這一順序被稱為單相全步進(jìn)模式,或者波驅(qū)動(dòng)模式。在任何一個(gè)時(shí)間,只有一相加電。
②雙相全步進(jìn)驅(qū)動(dòng):
    在這種模式中,雙相一起加電,因此,轉(zhuǎn)子總是在兩個(gè)極之間。此模式被稱為雙相全步進(jìn),這一模式是兩極電機(jī)的常態(tài)驅(qū)動(dòng)順序,可輸出的扭矩最大。
③半步進(jìn)模式:
    這種模式將單相步進(jìn)和雙相步進(jìn)結(jié)合在一起加電:單相加電,然后雙相加電,然后單相加電…,因此,電機(jī)以半步進(jìn)增量運(yùn)轉(zhuǎn)。這一模式被稱為半步進(jìn)模式,其電機(jī)每個(gè)勵(lì)磁的有效步距角減少了一半,其輸出的扭矩也較低。
    以上3種模式均可用于反方向轉(zhuǎn)動(dòng)(逆時(shí)針方向),如果順序相反則不行。
    通常,步進(jìn)電機(jī)具有多極,以便減小步距角,但是,繞組的數(shù)量和驅(qū)動(dòng)順序是不變的。
2、通用 DC 電機(jī)控制算法
    通用電機(jī)的速度控制,特別是采用 2 種電路的電機(jī):
    ? 相角控制
    ? PWM 斬波控制
①相角控制
    相角控制是通用電機(jī)速度控制的最簡單的方法。通過 TRIAC 的點(diǎn)弧角的變動(dòng)來控制速度。相角控制是非常經(jīng)濟(jì)的解決方案,但是,效率不太高,易于電磁干擾(EMI)。
圖8:通用電機(jī)的相角控制
    圖8表明了相角控制的機(jī)理,是TRIAC速度控制的典型應(yīng)用。TRIAC門脈沖的周相移動(dòng)產(chǎn)生了有效率的電壓,從而產(chǎn)生了不同的電機(jī)速度,并且采用了過零交叉檢測(cè)電路,建立了時(shí)序參考,以延遲門脈沖。
②PWM 斬波控制
   PWM 控制是通用電機(jī)速度控制的,更先進(jìn)的解決方案。在這一解決方案中,功率 MOSFET,或者 IGBT 接通高頻整流 AC 線電壓,進(jìn)而為電機(jī)產(chǎn)生隨時(shí)間變化的電壓。
圖9:通用電機(jī)的 PWM 斬波控制
    其開關(guān)頻率范圍一般為10-20KHz,以消除噪聲。這一通用電機(jī)的控制方法可以獲得更佳的電流控制和更佳的EMI性能,因此效率更高。
















免責(zé)聲明: 本文章轉(zhuǎn)自其它平臺(tái),并不代表本站觀點(diǎn)及立場(chǎng)。若有侵權(quán)或異議,請(qǐng)聯(lián)系我們刪除。謝謝!
    矽源特科技ChipSourceTek