

ShenZhen ChipSourceTek Technology Co., Ltd.

CST4057

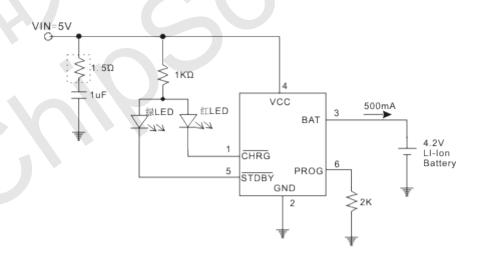
带电池反接保护 600mA 锂离子电池线性充电芯片

概述

是一款带电池反接保护的单节锂离子电池恒定电流/恒定电压线性充电芯片。使用较少的外部元件数量使得4057 成为便携式应用的理想选择。4057 可以适合 USB 电源和适配器电源工作。

4057 采用了内部 PMOSFET 架构,加上防倒充电路,所以不需要外部隔离二极管。热反馈环路设计可对充电电流进行自动调节,以便在大功率或高温环境下对芯片温度加以限制。

当输入电压被拿掉时,4057 自动进入一个低电流状态,典型条件下电池漏电流小于1uA。4057 的其它特点包括电池温度检测、欠压闭锁、自动再充电和两个用于指示充电、结束的LED状态引脚。


特点

- ▶ 电池反接保护
- ▶ 高达 600mA 的最大充电电流
- ▶ 预充 4.2V 充电电压
- ➤ BAT 小于 1uA 的超低自耗电
- ▶ 智能温度调节功能
- ▶ 智能再充电功能
- ▶ C/10 充电终止
- ▶ 2.9V 涓流充电阈值
- 充电和结束指示灯控制信号
- ➤ SOT23-6L 封装

应用

- ▶ 小音响等便携式设备
- 蓝牙耳机、GPS
- ▶ 移动电源、充电座
- ▶ 数码相机

典型应用

TEL: +86-0755-27595155 27595165 FAX: +86-0755-27594792 WEB:Http://www.ChipSourceTek.com

E-mail: Tony.Wang@.ChipSourceTek.com InFo@ChipSourceTek.com

1

ShenZhen ChipSourceTek Technology Co. , Ltd.

CST4057

管脚(SOT23-6)

CHRG 1 6 PROG 5 STDBY GND 2 BAT 3 4 VCC

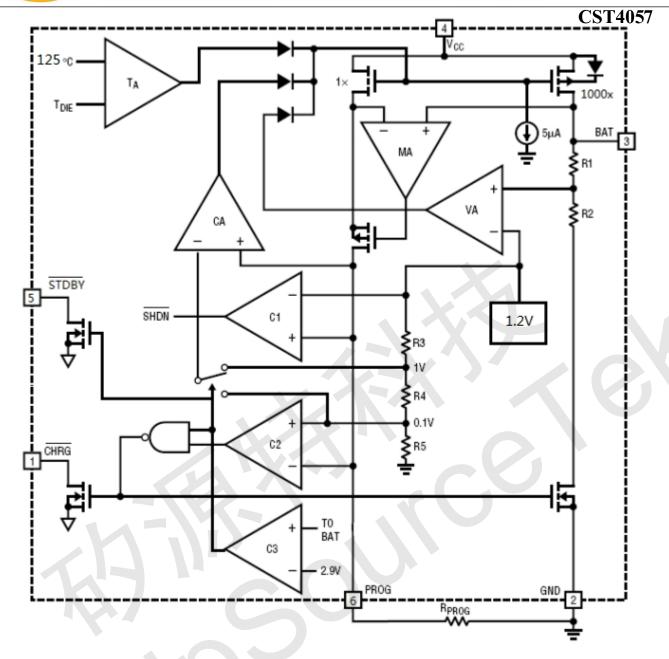
绝对最大额定值

输入电源电压 VCC.....-0.3~7V 其它引脚电压......-0.3~7V BAT 最大电流......0.8A 储存环境温度.....-50~+150℃ 工作结温.....-40~+125℃

电气特性

无特殊说明, VCC=5V,Ta=25℃

符号	参数	测试条件	最小值	典型值	最大值	单位
V _{cc}	输入电源电压		4.5	5	5.5	V
I _{cc}	工作电流	待机模式	X . <	65	100	uA
V _{FLOAT}	输出浮充电压	0°C≤T₄≤85°C	4.158	4.2	4.242	V
I _{BAT}	BAT 引脚电流	R _{PROG} =2K,电流模式	450	500	550	mA
		待机模式(V _{CC} =5V,V _{BAT} =3.7V)	0	2	4	μΑ
		睡眠模式,V _{cc} =0		0	2	μΑ
I _{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 2K$	40	50	60	mA
V _{TRIKL}	涓流充电阈值电压	R _{PROG} =2K,VBAT 上升	2.8	2.9	3.0	V
V _{TRHYS}	涓流充电迟滞电压	R _{PROG} =2K	60	80	100	mV
V _{UV}	Vcc欠压保护阈值电压	V _{cc} 上升	3.5	3.7	3.9	V
V _{UVHYS}	Vcc欠压保护迟滞电压	Vcc下降	0.15	0.2	0.3	V
V _{ASD}	V _{CC} -V _{BAT} 阈值电压	V _{cc} 上升	60	100	140	mV
	/ Y \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Vcc下降	5	30	50	mV
I _{TERM}	C/10 终止电流阈值	R _{PROG} =2K	40	50	60	mA
V _{PROG}	PROG 引脚电压	R _{PROG} =2K,电流模式	0.9	1.0	1.1	V
V _{CHRG}	CHRG引脚输出低电压	I _{CHRG} =5mA		0.3	0.6	V
V _{STDBY}	STDBY 引脚输出低电压	I _{STDBY} =5mA		0.3	0.6	V
ΔVRECHRG	再充电电池阈值电压	V _{FLOAT} -V _{RECHRG}	70	100	150	mV
T _{LIM}	限定温度模式结温			125		$^{\circ}$
R _{ON}	功率 FET 导通电阻			600		mΩ
T _{RECHRG}	再充电比较器滤波时间	V _{BAT} 下降	1	2	3	mS
T _{TERM}	结束比较器滤波时间	I _{BAT} 降至 C/10 以下	1	2	3	mS


TEL: +86-0755-27595155 27595165

FAX: +86-0755-27594792

ShenZhen ChipSourceTek Technology Co. , Ltd.

引脚功能

CHRG(PIN1):充电指示端

当充电器向电池充电时,CHRG引脚被内部开关拉到低电平,表示充电正在进行;否则CHRG管脚处于高阻态。

TEL: +86-0755-27595155 27595165

FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

WEB:Hπτp://www.CnipSourceTek.com
E-mail: Tony.Wang@.ChipSourceTek.com InFo@ChipSourceTek.com

ShenZhen ChipSourceTek Technology Co., Ltd.

GND(PIN2):电源地

BAT(PIN3):电池正极

将电池的正极连接到此管脚。在芯片被禁止工作或者睡眠模式,BAT管脚的漏电流小于2uA,BAT管脚向电池提供充电电流和4.2V的充满截止电压。

V_{cc}(PIN4):输入电源正极

VCC电压为芯片的工作电源,V_{CC}输入电压必须大于欠压锁定阈值且同时大于BAT电压100mV时,充电才会开始。当VCC输入电压低于欠压锁定阈值或V_{CC}与 BAT 管脚的电压差小于30mV时,4057 将进入低功耗的停机模式,此时BAT管脚的消耗电流小于2uA。

STDBY(PIN5):充满指示端

当电池充电完成时,STDBY被内部开关拉到低电平,表示充电完成。除此之外,STDBY管脚将处于高阻态。

PROG(PIN6):恒流充电电流设置端

PROG脚接电阻到GND可以对充电电流进行设定。设定电阻和充电电流采用下列公式来计算:

 R_{PROG} =1000V/ I_{BAT}

根据需要的充电电流I_{BAT}来确定电阻器R_{PROG}的阻值。在涓流充电阶段,此管脚的电压被调制在 0.1V,在恒流充电阶段,此管脚的电压被调制在1V。

应用说明

VCC 旁路电容

输入旁路电容可以选择多种类型的电容器,但是如果选用多层陶瓷电容时需特别注意,由于有些陶瓷电容Q值较高,在有些条件上电时(比如将VCC连接到一个工作中的电源),会产生一个较高的瞬态电压信号,对芯片造成威胁,特别是在电池反接情况下为防止接入充电器瞬间高压损坏芯片,必须给输入陶瓷电容串联一个1.5欧姆的电阻以最大限度减小启动电压瞬态信号(如典型应用图虚线框所示电阻)。

充电终止

当充电电流在达到最终浮充电压之后降至设定值的**1/10**时,充电过程结束。该条件是通过采用一个内部滤波比

封装外形尺寸

<u>SOT23-6L</u>

TEL: +86-0755-27595155 27595165

FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

E-mail: Tony.Wang@.ChipSourceTek.com InFo@ChipSourceTek.com

较器对PROG引脚进行监控来检测的,当PROG引脚电压降至100mV以下的时间超过2ms时,充电终止, 4057进入待机模式。

智能再充电

在待机模式中, 4057 对 BAT 引脚电压进行监控,只有当 BAT 引脚电压低于再充电阈值电压 4.05V 时 (对应电池容量约 80%),才会开始新的充电循环,重新对电池进行充电,这就避免了对电池进行不必要的反复充电,有效延长电池的使用寿命。

充电状态指示器

4057 有两个漏极开路状态指示输出端,CHRG和STDBY, 当充电器处于充电状态时,CHRG被拉到低电平,充电结 束后,CHRG为高阻态,STDBY被拉到低电平。

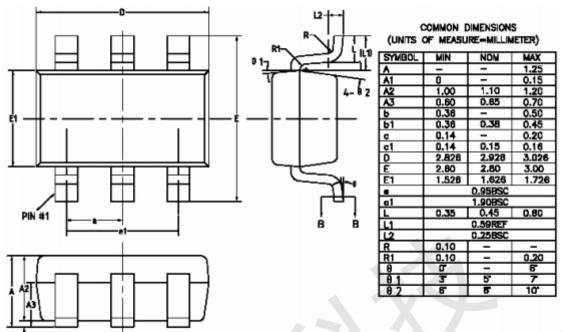
如果不使用状态指示功能时,将不用的状态指示输出端接地。下表是装态指示功能总结:

充电状态	红灯(CHRG)	绿灯(STDBY)
充电	亮	灭
充满	灭	亮
欠压	灭	灭
BAT接10uF电容	闪烁(T≈3S)	亮

智能温度控制

4057 内部集成了智能温度控制功能,当芯片温度高于125℃时,会自动减小充电电流。该功能允许用户提高给定电路板功率处理能力的上限而没有损坏 4057的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。

增加热调节电阻


降低IC的V_{cc}与BAT两端的压降能够显著减少IC中的功耗。在热调节时,这具有增加充电电流的作用。实现方式可以在输入电源与V_{cc}之间串联一个0.4Ω的功率电阻或正向导通压降小于0.5V的二极管,从而将一部分功率耗掉。

ShenZhen ChipSourceTek Technology Co. , Ltd.

CST4057

TEL: +86-0755-27595155 27595165

FAX: +86-0755-27594792

WEB:Http://www.ChipSourceTek.com

E-mail: Tony.Wang@.ChipSourceTek.com InFo@ChipSourceTek.com